Filière : SMPC S1 Module : Analyse 1

Année Universitaire : 2022–2023

Université Mohamed Premier Faculté Pluridisciplinaire -Nador Département de Mathématiques

Feuille de TD 1 – Suites réelles

Exercice 1 -Suites auxiliaires.

On considère la suite (u_n) définie sur \mathbb{N} par : $\begin{cases} u_0 = 1 + \sqrt{2} \\ u_{n+1} = 1 + \sqrt{u_n^2 - 2u_n + 4} \end{cases}$

- 1. Calculer u_1 et u_2 .
- 2. Justifier que $\forall n > 1, u_n \geq 1$.
- 3. On pose $v_n = (u_n 1)^2$
 - (a) Montrer que (v_n) est une suite arithmétique.
 - (b) Calculer v_n puis u_n en fonction de n.

Exercice 2 -Suites auxiliaires.

On considère la suite (u_n) définie sur \mathbb{N} par : $\begin{cases} u_0 = 5 \\ u_{n+1} = 2u_n - 3 \end{cases}$

- 1. Donner la suite auxiliaire (v_n) permettant l'étude de la suite (u_n) .
- 2. Montrer que (v_n) est une suite géométrique.
- 3. Exprimer v_n puis u_n en fonction de n.

Exercice 3 -Limites des suites explicites.

Calculer les limites suivantes :

$$\lim_{n \to +\infty} \frac{n + (-1)^n}{n - (-1)^n}, \quad \lim_{n \to +\infty} \sqrt{n+1} - \sqrt{n}, \quad \lim_{n \to +\infty} \frac{\cos(n)}{n+2}, \quad \lim_{n \to +\infty} \frac{3n - 2\sin\frac{1}{n}}{4n + \sin\frac{1}{n}},$$

$$\lim_{n \to +\infty} \tan\left(\frac{\pi n + 1}{3n + 4}\right), \quad \lim_{n \to +\infty} \arctan\left(n\sin\left(\frac{1}{n}\right)\right), \quad \lim_{n \to +\infty} \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}; \quad (\forall n \ge 1).$$

Exercice 4 -Suites récurrentes.

Soit la suite (u_n) définie par : $u_0 = 0$ et $u_{n+1} = f(u_n)$ où $f(x) = \frac{3x+2}{x+2}$

- 1. Etudier les variations de f et déterminer f([0,2]).
- 2. (a) Montrer que : $\forall n \in \mathbb{N}, u_n \in [0, 2].$
 - (b) Montrer que la suite (u_n) est croissante, puis en déduire qu'elle est convergente.
 - (c) Calculer la limite de la suite (u_n) .

Exercice 5 -Suites récurrentes.

Soit f une fonction continue de [0,1] dans [0,1] telle que f(0)=0, f(1)=1 et

$$\forall x \in]0,1[, f(x) < x.$$

1. On définit par récurrence une suite $(u_n)_{n\geq 0}$:

$$\begin{cases} u_0 \in [0, 1[\\ \forall n \ge 0, u_{n+1} = f(u_n). \end{cases}$$

Montrer que la suite $(u_n)_{n\geq 0}$ converge et donner sa limite.

2. On définit par récurrence une suite $(v_n)_{n\geq 0}$:

$$\begin{cases} v_0 = 1/2 \\ \forall n \ge 0, \ v_{n+1} = \frac{v_n}{2 - \sqrt{v_n}}. \end{cases}$$

Montrer que la suite $(v_n)_{n\geq 0}$ converge et donner sa limite.

Exercice 6 -Suites adjacentes.

Considérons les suites (u_n) et (v_n) définies par :

$$\begin{cases} u_0 = a, & v_0 = b, & 0 < a < b < 2a \\ u_n v_n = ab, & v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

- 1. Montrer que $\forall n \in \mathbb{N}, \ 0 < u_n < v_n$.
- 2. En déduire que la suite $(u_n)_n$ est croissante et que la suite $(v_n)_n$ est décroissante.
- 3. (a) Montrer $\forall n \in \mathbb{N}, \ v_{n+1} u_{n+1} < \frac{1}{2}(v_n u_n).$
 - (b) En déduire que $\lim_{n \to +\infty} u_n v_n = 0$.
 - (c) Montrer que $(u_n)_n$ et $(v_n)_n$ sont adjacentes.
- 4. Déterminer les limites des suites $(u_n)_n$ et $(v_n)_n$.